guess_stnderr
lca_se(pre_test = NULL, pst_test = NULL, nsamps = 100, seed = 31415, force9 = FALSE)
pre_test | data.frame carrying pre_test items |
---|---|
pst_test | data.frame carrying pst_test items |
nsamps | number of resamples, default is 100 |
seed | random seed, default is 31415 |
force9 | Optional. There are cases where DK data doesn't have DK. But we need the entire matrix. By default it is FALSE. |
list with standard error of parameters, estimates of learning, standard error of learning by item
pre_test <- data.frame(pre_item1 = c(1,0,0,1,0), pre_item2 = c(1,NA,0,1,0)) pst_test <- data.frame(pst_item1 = pre_test[,1] + c(0,1,1,0,0), pst_item2 = pre_test[,2] + c(0,1,0,0,1))# NOT RUN { lca_se(pre_test, pst_test, nsamps = 10, seed = 31415) # }